Motivation

- It is a possibility that Dark Matter could have its own sector of forces.
- There are some anomalies that Standard Model cannot explain such as Muon g-2 derivation from the SM.
- A heavy boson A' could explain these anomalies.

DarkLight Experiment Overview

- Search for a dark photon A' in the mass range of 10-100 MeV/c² which is possibly coupled to leptons.
- Reconstruct tracks of all four final Particles.
- Invariant mass of the e+/e- pair gives the mass of A'

Tracking and Reconstruction

 $e p \rightarrow e-p A' (50 MeV) \rightarrow e+e-$

LERF at Jefferson Lab

• 5mA electron beam with 100 MeV energy is delivered to a windowless Hydrogen target in 0.5T solenoidal field.

Design Overview

- 6 coil Toroidal Magnet
- field-free region along beam-target interaction region
- Target chamber
- 10⁻¹⁹ H-atoms/cm⁻² Radius=2 mm, Length=30cm, Flow rate=1.5x10¹⁸ s⁻¹, Target P= 100 torr
- Proton Detector

A radial TPC – made of Kapton - detect low energy recoil protons down to 1MeV

- Lepton Tracker GEM detector
- Trigger scintillators

Trigger the scattered electrons

GEM Detectors

- GEM telescope Specifications-
- Consists of four 10x10 triple layer GEM chambers
- Each GEM has four APV-25 frontend chips connected to x and y axis.
- 2000 readout channels total.
- GEMs were supplied ArCO₂ gas mixture in 75:25 ratio

GEM Detectors

• The GEM stack was installed inside the solenoid above the beam pipe.

Aug/Sep Run 2016

- Was an engineering run.
- Successfully acquired few hours of data.
- Data taking-
 - √ Took multiple latency scans to time in GEMs
 - √ Recorded large 'splash' samples without target gas.
 - ✓ Recorded 1k events with target at 300 mTorr

Problems and Issues

- Alignment:
- -Beam was never able to pass clearly through the target region.
- -Need to align to axis of magnet with precision of less than a millimeter.
- -Should have a test run where the laser is mounted and clearly through moller dump, i.e. sight down through target weeks in advance.
- Pumping
- -Pumping was less effective than predicted.
- -Turbo 1 broke, hypothesis is that this was due to shaking during valve closure.
- -Also, pumps were not vertically aligned well.

Problems and Issues

- GEMs
- -Problems with I2C communication (i.e. couldn't program APVs)
- -APVs intermittently became non-responsive with no clear way to recover (4 APVs absent during data taking)
- Trigger Paddles
- -One v812 malfunctioned after installation.
- -Slow controls incident damaged more channels, not clear what happened.
- Slow Controls
- -Slow controls webserver occasionally froze
- -Various bugs

Data Analysis

- The DAQ system is almost different than what we used before for the MUSE experiment.
- So the DAQ code has been adjusted by Anusha to read new data type.
- Still the Data Analysis is in the beginner's phase.

Raw ADC spectra – x axis

Raw ADC Spectra – y axis

1D Raw ADC spectra

Continue...

- Mapping has to be corrected accordingly, since we changed some of the APV cards from v3.1 to v3.0 at LERF.
- More analysis has to be done to see clean clusters..

Goals for coming weeks

- Data Analysis:
- -Adjust mapping
- -Pedestal subtraction from the raw ADC spectra for each strip
- -Common mode noise correction for each event
- Hardware
- -Replace broken APVs in the DL GEM stack.

11/8/16

17